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Course outcomes:

At the end of this course students will demonstrate the ability to

1. Design and analyze combinational logic circuits

2. Design & analyze modular combinational circuits with MUX/DEMUX, Decoder, Encoder
3. Design & analyze synchronous sequential logic
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Lesion Plan, Digital System Design (EC302), Session 2023-24, ODD SEM

Module 1 (10L)
Review of Number System (2L):
B Tecl: Unsigned Number - 1L
B Tec2: Signed Number - 1L
® Togic Simplification and Combinational Logic Design (5L):
B TLec3: Review of Boolean Algebra and De-Morgan’s Theorem - 1L
B Tec4: SOP & POS forms, Canonical forms - 1L
B Tec5-6: Karnaugh’s map - 2L

B Tec7-8: Binary codes, Code Conversion - 2L
® MSI devices like (3L):
B Tec9-10: Comparators, Multiplexers, Encoder, Decoder - 2L
B Tecll-12: Half and Full Adders, Subtractors, Serial and Parallel Adders - 2L
lecture

B Lec-13: BCD Adder, Fast adders, Barrel shifter and ALU - 1L

Module Il (6L)
Lecl4: Ripple and Synchronous counters - 1L
. Lecl5: Shift registers - 1L
® rinite state machines (4L):
B lecl6: Design of synchronous FSM - 1L
B Designing synchronous circuits like:
® 1cc17-18: Synchronous Counter - 2L
@ 1ecl9: Pulse train generator, Pseudo Random Binary Sequence generator -
1L

Module III (8L)
® TLogic Families and Semiconductor Memories:
B TLec20-21: TTL, ECL, CMOS families - 2L

® Tec22: Semiconductor Memories - 1L

® Tec23: Concept of Programmable logic devices like FPGA - 1L
® TLec24: Logic implementation using Programmable Devices - 1L
® Different types of A/D and D/A conversion techniques (3L):

B TLec25: Sample and hold circuit - 1L
B Lec26: D/A Converters - 1L
B Lec27: A/D Converters - 1L

Unit IV (8L)
® TLec28-29: VLSI Design flow: Design entry Schematic, FSM & HDL - 2L
® T1ec30-33: different modeling styles in VHDL, Data types and objects, Data flow,

Behavioral and Structural Modeling - 4L
® Tec34-35: Synthesis and Simulation VHDL constructs and codes for combinational
and sequential circuits - 2L

Lecture Notes
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Module-I:

NUMBER SYSTEMS: Binary, Octal and Hexadecimal representation and their conversions;
BCD, ASCII, EBDIC, Gray codes and their conversions; Signed binary number
representation with 1’s and 2’s complement methods, Binary arithmetic.

Introduction:

What is Electronics?

Electronics means study of flow of electrons in electrical circuits. The word
Electronics comes from electron mechanics which means learning the way how an
electron behaves under different conditions of externally applied fields. IRE - The
Institution of Radio Engineers has given a definition of electronics as “that field
of science and engineering, which deals with electron devices and their
utilization.” Fundamentals of electronics are the core subject in all branches of
engineering nowadays.

Electronics is distinct from electrical and electro-mechanical science and
technology, which deals with the generation, distribution, switching, storage, and
conversion of electrical energy to and from other energy forms using wires, motors,
generators, batteries, switches, relays, transformers, resistors, and other passive
components. This distinction started around 1906 with the invention of the triode by
Lee De Forest, which made electrical amplification of weak radio signals and audio
signals possible with a non-mechanical device. Until 1950 this field was called
“radio technology” Dbecause its principal application was the design of radio
transmitters, receivers, and vacuum tubes.

Analog electronics are electronic systems with a continuously varying signal, in
contrast to digital electronics where signals wusually take only two different
levels. The term “analogue” describes the proportional relationship between a signal
and a voltage or current that represents the signal. The word analogue is derived
from the Greek word “Analogos” meaning “proportional”.

BINARY NUMBER SYSTEM

We are comfortable with Decimal Number System having base or radix of 10.
Implementation of decimal system in digital circuits thus requires signals
(voltage/current) to be divided into 10 levels. The same reduces the reliability of
the system giving birth of binary system which uses only two levels - logic 0 and
logic 1. 1In digital circuits, logic 0 1s represented by OV and logic 1 1is
represented by 5V.

Binary number system is also a positional weighted system like decimal number system
where each binary digit (called bit) carries a certain weight according to its
position with respect to the decimal point as shown below:

Table-1: Weights of the bits of a binary number with 8-bit integer and 4-bit
fraction.

Bit d; de ds d, d; d, d; do . d-; d-, d-s d-4
27 26 2° 24 23 22 2! 2° 271 272 273 27
Weight
128 64 32 16 8 4 2 1 . 0.5]10.25(10.125| 0.0625

Examplel: Convert 110100, to its equivalent decimal
110100, = 1x2° + 1x2* + 0x2°® + 1x2% + 0x2' + 0x2°
= 32 + 16 + 0 + 4 + 0 + 0
= 524
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Example-2: Convert 110.101, to its equivalent decimal

110.101, = 1x2° + 1x2' + 0x2° + 1x2t 4+ 0x27% + 1x2°3
= 4 + 2 + 0 + 0.5 + 0 + 0.125
= 6.6254

These examples illustrate binary to decimal conversion. Decimal to binary conversion
is as follows:

First divide the number at the decimal point and treat the two parts
separately

For the integer part, repeatedly divide it by 2 and store the remainder until
nothing is left

Write the remainders from bottom to top to get the binary number. The reverse-
ordering comes as the first division by 2 gives the least significant bit
(1sb) and so on until the last division which gives the most significant bit
(msb) .

For the fractional part, repeatedly multiply the fraction part by 2 and record
the carries i.e. when the resulting number 1is greater than 1. Repeat this
process until the desired precision is achieved.

Example-3: Convert 57.4801; to its binary equivalent to 14-bit accuracy.

As the decimal number has both an integer and a fractional part the problem has to
be done in two steps

First take the integer part i.e. 57 and repeatedly divide by 2 noting the remainders
of each division.

57 / 2 = 28 remainder 1 1lsb
28 / 2 = 14 remainder O
14 / 2 = 7 remainder O
7 / 2 =3 remainder 1
3 / 2 =1 remainder 1
1 / 2 =0 remainder 1 msb

The binary equivalent of 574 is therefore given by the remainders ordered from most
significant bit (msb) to least significant bit (lsb) and is hence 1110001,.

The fractional part is given by repeatedly multiplying by 2 and storing the carries
(when the result of the multiplication exceeds 1) until the required bit accuracy is
reached.

.4801 x 2 = .9602 + O
L9602 x 2 = .9204 + 1
.9204 x 2 = .8408 + 1
.8408 x 2 = .6816 + 1
.681l6 x 2 = .3632 + 1
.3632 x 2 = .7264 + 0
L7264 x 2 = .4528 + 1
.4528 x 2 = .9056 + O

and so0,57.4801; = 111001.01111010,

OCTAL NUMBER SYSTEM
Octal number system was extensively used in earlier microcomputer system. It is also
a positional weighted system having base or radix of 8. Eight symbols 0, 1, 2, 3, 4,

5,

6 and 7 are used to express octal numbers. As the base is 8 = 23, every 3-bit
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group of binary can be represented by an octal digit. Conversion between octal and
binary is therefore extremely easy.

Example-4: Convert 567.34; to equivalent binary

Octal number 5 6 7 . 3 4
3-bit binary for each octal digit 101 110 111 . 011 100
Result, putting all bits together 101110111 . 011100,

Example-5: Convert 110101001.011101, to equivalent octal

The binary number writing in groups of 3-bits 110 101 001 . 011 101
starting from the decimal point on either side

Octal digits, one for each group 6 5 1 . 3 5
Result, putting all digits together 651 . 354

Octal to decimal conversion can be achieved by multiplying the octal digits by their
respective weights and then adding them together.

Example-6: Convert 567.34; to equivalent decimal

567.34, = 5x8% + 6x8' + Tx8% +3x87' +4x87% = 320 + 48 + 7 + 0.375 + 0.0625 375.43754

Decimal to octal conversion for integer requires repeated division by 8 till the
quotient is 0 and then putting them together from bottom to top. On the other hand,
for fractions multiply the decimal fractions by 8 repeatedly till the fraction part
of the product is 0 or till the required accuracy is achieved.

Example-7: Convert 567.98;, to equivalent octal number
First let us take the integer part of the decimal number which will be successively
divided by 8 to get the octal integer

567 / 8 = 70 with remainder 7 1sd
70 / 8 = 08 with remainder 6
08 / 8 = 01 with remainder O
01 / 8 = 00 with remainder 1 msd

The octal equivalent of the integer part of the decimal number 567,, is given by the
remainders written from msd to lsd and is hence 1067

Now let us take the fraction part of the decimal number and multiply successively
the fraction by 8 to get the octal fraction

.98 x 8 = 7.84 (msd)

.84 x 8 = 6.72

.72 x 8 = 5.76

.76 x 8 = 6.08

.08 x 8 = 0.64

.64 x 8 = 5,12 and soO on ...

Thus the fractional part of the octal number is 0.7656054

So, the complete result is 567.98;, = 1067.765605;

HEXADECIMAL NUMBER SYSTEM
A useful way of expressing long pure binary coded numbers 1is by the use of
hexadecimal numbers i.e. base 16. This is because each group of four bits (called a
nibble since 2 nibbles make a byte) can be converted into one hexadecimal number.
The mapping between binary, decimal and hexadecimal (hex.) numbers is shown below.
Decimal Binary Hex Decimal Binary Hex
0 0000 0 8 1000 8
1 0001 1 9 1001 9
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2 0010 2 10 1010 A
3 0011 3 11 1011 B
4 0100 4 12 1100 C
5 0101 5 13 1101 D
6 0110 6 14 1110 E
7 0111 7 15 1111 F

To convert a binary number into its hexadecimal equivalent, first ensure that the
binary number has a few bits that is a multiple of 4, if not add zeros to the left
until it does. Of course, this is true in case of unsigned/positive numbers; in case
of negative number, add ones to the left. Then split the number into nibbles and
convert each nibble into its hexadecimal counterpart.

Example-8: Convert the binary number 1101101101101 to its hexadecimal equivalent.
The binary number 1101101101101 has 13 digits. First extend this to a multiple of 4
(i.e. 16) by adding three leading 0Os to the number, i.e.

11011011001101 becomes 0001101101101101

Next break the binary number up into nibbles (4-bit groups) and convert each nibble
to its hexadecimal equivalent.

Binary 0001 1011 0110 1101

Hexadecimal 1 B 6 D
Hence, 1101101101101, = 1B6D,
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SIGNED NUMBERS

In decimal system, + and - signs are used to represent positive and negative
numbers. However, in binary only 0’s and 1’s are recognized. So a 1 or a 0 is used
to represent whether a number is positive or negative. A 0 at the left indicates
that the number is positive and a 1 for negative. However there are a number of ways
a negative number can be represented. These are:

a) Sign-Magnitude (Signed Magnitude) Method:
In signed magnitude method, most significant bit (msb) is the sign bit and
remaining bits are used to represent the magnitude of the number. For example,
in an 8-bit binary number system, +/-125,, and +/-100,, can be represented as:
+125;, = 0111 1101,, -125,, = 1111 1101,
+100,, = 0110 0100,, -100,, = 1110 0100,

Arithmetic operation in signed magnitude method needs to check the signs and
magnitudes of the operands before the actual operation to be performed. This
increases the complexity of the circuit concerned. Also it takes more time.
The complication may be avoided by representing negative numbers by their
complements viz. 1’s complement and 2’s complement.

b) 1’s Complement Method:
In this method also the msb represents the sign of the number and remaining
bits represent the magnitude. But unlike signed magnitude method, the
magnitude of a negative number is represented with bit by bit complements of
the corresponding positive number. +/-125,, and +/-100,, can be represented in
1"s complement method as:

+125,, = 0111 1101,, -125,, = 1000 0O10,, +100,, = 0110 0100,, -100,, = 10011011,

Arithmetic operation also needs no decision making before the actual operation
to be performed. But any carry generated for addition of two numbers in this
method needs to be added with the result to get the correct value.

c) 2’s Complement Method:
In 2’'s complement method too, the msb is used to represent the sign bit and
the remaining bits represent the magnitude. But the magnitude of a negative
number 1is represented by the 2’s complement of the corresponding positive
number. 2’s complement 1is calculated by adding 1 to 1’s complement of the
number. +/-125;, and +/-100,, can be represented in 2’'s complement method as:

+125, = 0111 1101,, -125, = 1000 0OO11,, +100,, = 0110 0100,, -100,, = 1001 1100,

Arithmetic operation also needs no decision making before the actual operation
to be performed. Carry generated for addition of two numbers in this method is
discarded.

Example-9: Represent the following decimal numbers in 8-bit singed magnitude, 1’s
and 2’s complement forms: +354, -354, +654, -654, +127 4, -127,, +128,, -128 4

. 8-it Binary Number
becimal Signed , , Remarks
Number Magnitude 1’s Complement 2"s Complement
+35 001 0011 001 0011 001 0011 2’s complement
-35 001 0011 110 1100 110 1101 representation
+65 010 0001 010 0001 010 0001 has only one 0
-65 010 0001 101 1110 101 1111 unlike signed
+127 111 1111 111 1111 111 1111 magnitude and 1's
-127 111 1111 000 0000 000 0001 complement system
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Out of range.
Out of range. Out of range. Range is: -128
+128 Range is: =127 Range is: =127 to -1, 0, +1
to -0, +0 to to -0, +0 to to +127 which have two 0s
+ + -
128 127 127 000 0000 namely -0 and +0

Shortcut methods of finding 2’s complements are as follows:

Method-2: -128 in 2’s complement is 1000 0000 and thus the sign bit (msb) can be
considered to have a positional weight of -128 and other places have their usual
weights but positive 1i.e. the weights of the bits of an 8-bit 2’s complement
representation are -128, +64, +32, +16, +8, +4, +2, +1. So any -ve number can be
expressed as sum of -128 and some positive values in 2’s powers and then can be
represented by putting 1ls in their respective positions.

Example-10: Represent, -128, -127, -80, -10 and -1 in 2’'s complement system

a) -1284 = -128+0 = 1000 0000,
b) -127, = -128+1 = 1000 0001,
c) -804 = -128 +32+16 = 1011 0000,
d) -104 = -128+4+64+32+16+4+2 = 1111 0110,
e) -14 = -128+64+32+16+8+4+2+1 = 1111 1111,

Method-3: First represent the positive number in equivalent binary; proceed from the
right (lsb), keep the bits unchanged up to and including the first 1 and then
complement all the remaining bits.

Example-11: Express the numbers of Example-10 in 2’s complement following the third
method.

-ve Number Corresponding +ve number | Binary representation -ve number in 2’s
of +128 complement form
-128, 128y 1000 0000 000 0000,
=127, 127, 0111 1111 000 0001,
-80p 80p 0101 0000 011 0000,
-10, 10, 0000 1010 111 0110,
-1, 1, 0000 0001 111 1111,
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BINARY ARITHMETIC

Signed Magnitude Arithmetic

Binary addition and subtraction in signed magnitude method require certain decision
before and after the actual operation 1s performed. Let us take the following
examples:

+ 98 +98 -98 - 98
+ 78 -78 +78 - 78
+176 +20 -20 -176

The observations are:
a) If signs of both the operands are identical, they will be added and the sign
of the result will be that of either of them.

b) If their signs are different, the smaller operand will be subtracted from the
larger one and the sign of the result will be that of the larger operand.
Implementation of signed magnitude arithmetic requires more hardware. Decision
making also takes larger time to complete the operation and thus is not followed in
computer system. Rather subtraction 1in computer system 1is implemented through

addition; the complement of the subtrahend is added with the minuend.

1’s Complement Arithmetic

a) Express the subtrahend in 1’s complement form

b) Add it with the minuend

c) If there is a carry out, bring the carry around and add it to the 1lsb. This is
called the end around carry.

d) If the sign bit (msb) is 0, the result is +ve

e) If it is 1, the result is -ve and is in 1’s complement form. Take its 1’s
complement to get the magnitude of the result.

Example-12: Perform using 8-bit 1’s complement method: a) 127 - 59, b) 59 - 127, c)
-35 - 65 and d) 35 + 65
a) 127 111 1111

-59 +1100 0100 1’s complement of 59

+68 10100 0011
+1 End around carry to be added with 1lsb

100 0100

The msb is 0, the result is +ve and is in pure binary. Therefore, the result is
+684.

b) 59 011 1011
-127 + 1000 0000 1’s complement of 127
- 68 011 1011

The msb is 1, the result is -ve and is in 1’s complement form. 1’s complement of
1011 1011 is0100 0100. Therefore, the result is -68.

c) -35 101 1100 1’s complement of 35
-65 +:.011 1110 1’s complement of 65
-100 1:001 1010
TT—= +1 End around carry
001 1011
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The msb is 1, the result is -ve and 1is in 1’s complement form. 1’s complement of
1001 1011 is 0110 0100. Therefore, the result is -100.

d) 35 010 0011
+65 +0100 0001
+100 110 0100

The msb is 0, the result is +ve and is in pure binary. Therefore, the result is
+1004.

2’s Complement Arithmetic
a) Express the subtrahend in 2’s complement form
b) Add it with the minuend
) Ignore carry out, 1f any
) If the sign bit (msb) is 0, the result is +ve
) If it is 1, the result is -ve and is in 2’'s complement form. Take its 2's
complement to get the magnitude of the result.

Example-13: Perform using 8-bit 2’s complement method: a) 127 - 59, b) 59 - 127, c)
-35 - 65 and d) 35 + 65

100 0100 Final result ignoring carry

The msb is 0, the result is +ve and is in pure binary. Therefore, the result is
+684.

b) 59 011 1011
-127 +1000 0001 2's complement of 127

The msb is 1, the result is -ve and is in 2’s complement form. 2’'s complement of
1011 1100 is 0100 0100. Therefore, the result is -68.

c) -35 101 1101 2's complement of 35
-65 +1011 1111 2’s complement of 65

-100 11001 1100
001 1100 Final result ignoring carry

The msb is 1, the result is -veand is in 2’s complement form. 2’s complement of 1001
1100 is 0110 0100. Therefore, the result is -100.

d) 35 010 0011
+65 +0100 0001

The msb is 0, the result is +ve and is in pure binary. Therefore, the result is
+1004.
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Example-14: Add 30.125 to -93.625 using 12-bit (8-bit integer plus 4-bit fraction)
2's complement arithmetic.

30.125 001 1110.0010
-93.625 + 010 2"s complement of 93.625 (express 93.625 in binary
—————————— 0010.0110 and then take 2’'s complement of the whole number
———————————————— ignoring the decimal point)
-63.500 100 0000.1000 | No carry

The msb is 1, the result is -ve and is in 2’s complement form. 2’s complement of
1100 0000.1000 is 0011 1111.1000. Therefore, the result is -63.5.

Example-15: Considering 8-bit 2’s complement system, add (i) -100 -30, (ii) 100 +30
and explain the overflow condition

30d = 0001 1110, -30d = 1110 0010, 100d 110 0100, -100d = 1001 1100

-30 110 0010
-100 001 1100
-130 1 0111 1111

-130 is out of the range as in 8-bit 2’'s complement system the range of number is: -
128 to +127. This is an overflow condition and is satisfied by the carry flow (no
carry from D6 but a carry from D7).

100 110 0100
+30 001 1110
+130 O 000 0010

+130 is again out of the range. This is an overflow condition and is satisfied by
the carry flow (a carry from D6 but no carry from D7).

Note:
1. In case of -ve mixed number (integer plus fraction), if you observe carefully
the integer part in 2’s complement form, you will find that it is actually the
2's complement of the next higher number. For example, 1010 0010 is 2’'s
complement of 94 (not of 93) i.e. -94. Therefore, the fraction should be
positive and it must be +0.375 so that -94 + 0.375 will be producing -93.625.
So in complement representation, fraction is always considered to be positive.
2. In case of signed arithmetic, if the result is not limited within the range of
the numbers of the system, overflow occurs. Consider two numbers a and

b. If we subtract a from b, the result can't have a greater magnitude
than either a or b. Therefore, adding two numbers of different sign cannot
generate overflow. If a and b have the same sign, but at+b has a different
sign, then overflow has occurred.

3. Also overflow is said to occur if there is a carry either from D6 or from D7
position but not from the both.
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Binary Codes

Representation of Numerals and Alphabets plus Numerals in terms of binary numbers is
called Binary Coding. The binary number itself is called the binary code. The binary
codes representing numerals are called Numeric codes and that representing
Alphanumeric information are called Alphanumeric Codes.

Binary Codes
1. Numeric: Numeric Codes may also be classified as Weighted, Non-weighted, Self

Complementing, Sequential, Error Detecting and Correcting, Reflective and Cyclic

Codes.

o Weighted: In weighted code, each binary bit position is having a fixed wvalue
called weight. Examples are Binary and BCD codes. BCD codes may also be
classified as positively weighted and negatively weighted. 1In positively
weighted codes, all the positional weights are positive and for negatively
weighted codes, some of the positional weights are negative. Examples of
positively weighted codes are: 8421, 4221, 2421, 5211, 3321 and 4311 are some
of 17 such codes. Examples of negatively weighted codes: 642-3, 631-1, 84-2-1
etc. All these are BCD codes.

o Non-weighted: In non-weighted code, the bits are having no fixed values or
weights. Examples are: Gray, Excess-3 etc. Non-weighted codes are not suitable
for arithmetic operations.

o Self Complementing: 9’s complement can be calculated by interchanging 0’s and
1’s in the code. 2421, 5211 and XS-3 are examples of self-complementing codes.

o Sequential: The codes in which succeeding code word is one greater than the
preceding one. 8421, XS-3 are sequential codes.

o Error Detecting and Correcting: Data transmission from one place to other
distant place or even within a computer, 1 or 0 may be misinterpreted as 0 or 1
due to noise. Error detection techniques allow detecting such errors, while
error correction enables reconstruction of the original data in many cases.
Parity and Hamming codes are used to detect and correct errors respectively.

o Reflective: It is a binary code where two successive values differ by one bit
only. The name “reflective” was coined by Bell Labs researcher Frank Grey since
it may be built up from the conventional binary code by a sort of reflection
process. The code later became popular after the name of Gray. The reflected
binary code was originally designed to prevent spurious output from
electromechanical switches. Today, Gray codes are widely used to facilitate
error correction in digital communications such as digital terrestrial
television and some cable TV systems.

Dec Gray Binary
0 000 000

1 001 001

2 011 010

3 010 011

4 110 100

5 111 101

6 101 110

7 100 111

o Cyclic: The code in which each code word differs from the preceding code word
in only one bit position is called cyclic code. Gray code 1is a cyclic code.
Sometimes it is also called unit distant code.

2. Alphanumeric: Computers not only need to process numeric data, also they have to
process letters of alphabet, special characters and symbols. Binary codes
representing alphabet, numerals, special characters, and symbols are <called
Alphanumeric codes. Examples are ASCII, EBCDIC, Hollerith. Input output devices
such as keyboards, monitors, mouse can be interfaced using these codes.

The full form of ASCII code is American Standard Code for Information

Interchange. It is a seven-bit code based on the English alphabet. In 1967 this

code was first published and since then it is being modified and updated. ASCII

code has 128 characters.

The EBCDIC stands for Extended Binary Coded Decimal Interchange Code. IBM
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invented this code to extend the Binary Coded Decimal which existed at that time.
All the IBM computers and peripherals use this code. It 1is an 8-bit code and
therefore can accommodate 256 characters.

Hollerith code is a code for relating alphanumeric characters to holes in a
punched card. It was devised by Herman Hollerith in 1888 and enabled the letters
of the alphabet and the digits 0-9 to be encoded by a combination of punchings in
12 rows of a card.

BCD Codes

The usual way of expressing a decimal number in terms of a binary number is known as
pure binary coding. A number of other techniques can be used to represent a decimal
number. These are:

8421 BCD Code
In the 8421 Binary Coded Decimal (BCD) representation each decimal digit is
converted to its 4-bit pure binary equivalent.

For example: 57dec = 0101 011l1lbcd

Addition is analogous to decimal addition with normal binary addition taking place
from right to left. For example,

6 0110 BCD for 6 42 0100 0010 BCD for 42
+3 0011 BCD for 3 +27 0010 0111 BCD for 27
1001 BCD for 9 0110 1001 BCD for 69

Where the result of any addition exceeds 9(1001) then six (0110) must be added to
the sum to account for the six invalid BCD codes that are available with a 4-bit
number. Six (0110) must also be added to the sum in case there is a carry. This is
illustrated in the examples below:

8 1000 BCD for 8

+7 0111 BCD for 7

1111 exceeds 9 (1001), so

0110 add six (0110)

0001 0101 BCD for 15

9 1001 BCD for 9

+9 1001 BCD for 9

1 0010 A carry 1is generated

0110 Add six (0110)

0001 1000 BCD for 18

Note that in the last examples the 1 that carried forward from the first group of 4
bits has made a new 4-bit number and so represents the "1" in "15" or “18”.

In the examples above the BCD numbers are split at every 4-bit boundary to make
reading them easier. This is not necessary when writing down a BCD number.
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4221 BCD Code

The 4221 BCD code is another binary coded decimal code where each bit is weighted by
4, 2, 2 and 1 respectively. Unlike BCD coding there are no invalid representations.
The decimal numbers 0 to 9 have the following 4221 equivalents

Decimal 4221 1's complement

0 0000 1111
1 0001 1110
2 0010 1101
3 0011 1100
4 1000 0111
5 0111 1000
6 1100 0011
7 1101 0010
8 1110 0001
9 1111 0000

The 1's complement of a 4221 representation is important in decimal arithmetic. In
forming the code remember the following rules

¢ Below decimal 5, use the right-most bit representing 2 first

® Above decimal 5, use the left-most bit representing 2 first

® Decimal 5 = 2+2+1 and not 4+1

Gray Code

Gray coding 1is an important code and is used for its speed, it is also relatively
free from errors. In pure binary coding or 8421 BCD, the counting from 7 (0111) to 8
(1000) requires 4 bits to be changed simultaneously. If this does not happen at a
time then various numbers could be momentarily generated during the transition so
creating spurious numbers which could be read.

Gray coding avoids this since only one bit changes between subsequent numbers. To
construct the code there are two simple rules. First start with all 0s and then
proceed by changing the least significant bit (lsb) which will bring about a new
state.

The first 16 Gray coded numbers are indicated below.

Decimal Binary Gray Code | Decimal Binary Gray Code
0 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111
3 0011 0010 11 1011 1110
4 0100 0110 12 1100 1010
5 0101 0111 13 1101 1011
6 0110 0101 14 1110 1001
7 0111 0100 15 1111 1000
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Code Conversion:
Binary to Gray
G, = B,

G, = B, XOR B,
Gn—2 = Bn—l XOR Bn—2
G, = B, XOR B;

The conversion procedure is as follows:

Record the MSB of Binary as MSB of Gray
Add the MSB of the binary to the next bit of the binary, recording the sum and
ignoring the carry, if any, i.e. XOR the bits. This sum is the next bit of the
Gray code.

¢ Add the second bit of the binary to the 3rd bit of Binary, 3rd bit to the 4th
bit, and so on.

® Record the successive sums as the successive bits of gray code until all the
bits of binary are exhausted.

Example-16: Convert the binary 1010 to Gray code.

Binary 1 0 1 0
Shifted binary 1 0 1 0
Gray 1 1 1 1 (Taking Sum and discarding Carry)

Gray to Binary:
B, = G,
Bi-1 = By XOR G,-g
Bn—2 = Bn—l XOR Gn—2
B, = B, XOR G,
Conversion Procedure:
® Record the MSB of Gray as MSB of Binary
¢ Add the MSB of the binary to the next significant bit of Gray i.e. XOR the
bits. Record the sum and ignore the carry.
¢ Add the second bit of the binary to the 3rd bit of Gray, 3rd bit to the 4th
bit of the Gray, and so on.
® Continue this till all the Gray bits are exhausted. The sequence of bits that
has been written down is the binary equivalent of the Gray code number.

Example-17: Covert the Gray code 1111 to binary.

Example-18: Convert the Gray coded number 10011011 to its binary equivalent.

B, = G, =1
B = B, XOR G¢ = 1 XOR 0 = 1
B, = B; XOR G = 1 XOR 0 = 1
B, = B; XOR G, = 1 XOR 1 = 0
B, = B, XOR Gy = 0 XOR 1 = 1
B, = B; XOR G, = 1 XOR 0 = 1
B, =B, XORG, =1 XOR 1 =0
By = B, XOR G, = 0 XOR 1 = 1

S0,10011011 gray = 11101101 bin

Gray coding is a non-BCD, non-weighted reflected binary code.
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FURTHER READING ON CODING:

ASCII Code

The American Standard Code for Information Interchange (ASCII) is a character-
encoding scheme originally Dbased on the English alphabet that encodes 128

specified characters - the numbers 0-9, the letters a-z and A-7, some
basic punctuation symbols, some control codes that originated with Teletype
machines, and a blank space - into the 7-bit binary integers.

ASCII codes represent text in computers, communications equipment, and other
devices that use text. Most modern character-encoding schemes are based on ASCII,
though they support many additional characters. The ASCII Table is given below.

ASCII Hex Symbol ASCII Hex Symbol ASCII Hex Symbol ASCII Hex Symbol
0 0 NUL 16 10 DLE 32 20 (space) 48 30 0
1 1 SOH 17 11 DCl1 33 21 ! 49 31 1
2 2 STX 18 12 DC2 34 22 " 50 32 2
3 3  ETX 19 13 DC3 35 23 # 51 33 3
4 4 EOT 20 14 DC4 36 24 $ 52 34 4
5 5 ENQ 21 15 NAK 37 25 % 53 35 5
6 6 ACK 22 16 SYN 38 26 & 54 36 6
7 7  BEL 23 17 ETB 39 27 ' 55 37 7
8 8 BS 24 18 CAN 40 28 ( 56 38 8
9 9 TAB 25 19 EM 41 29 ) 57 39 9
10 A LF 26 1A SUB 42 2A * 58  3A :
11 B VT 27 1B ESC 43 2B + 59 3B ;
12 C FF 28 1C FS 44  2C , 60 3C <
13 D CR 29 1D GS 45 2D - 61 3D =
14 E SO 30 1E RS 46 2E . 62 3E >
15 F SI 31 IF  US 47 2F / 63 3F ?

ASCII Hex Symbol ASCII Hex Symbol ASCII Hex Symbol ASCII Hex Symbol

64 40 @ 80 50 P 9% 60 ) 11270

65 41 A 81 51 Q 97 61 a 113 71 b
66 42 B 82 52 R 98 62 b 114 72 (rl
67 43 C 8 53 S 99 63 c 115 73 s
68 44 D 84 54 T 100 64 d 116 74 ¢
69 45 E 8 55 U 101 65 e 117 75 u
70 46 F 8 56 A% 102 66 f 118 76 v
71 47 G &7 57 W 103 67 g 119 77 W
72 48 H 88 58 X 104 68 h 120 78 X
73 49 I &89 59 Y 105 69 1 121 79

74 4A J 90 S5A Z 106 6A ] 122 7A }Z]
75 4B K 91 5B [ 107 6B k 123 7B {
76 4C L 92 5C \ 108  6C 1 124 7C |

77 4D M 93 5D ] 109 6D m 125 7D !

78 4E N 94 5E A 110  6E n 126 7E ~
79  4F O 95 SF _ 111  6F 0 127 7TF
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EBCDIC Codes
Extended Binary Coded Decimal Interchange Code (EBCDIC) is an 8-bit character

encoding used mainly on IBM mainframe and IBM midrange computer operating
systems.

Dec Hx Oct Char Dec Hx Oct Char |Dec Hx Oct Char [Dec Hx Oct Char
0 0000 nul Ml B2 41 101 130 52 202 b (192 c3 303 C
1 1 001 =zoh (Start of Heading) BE 42 102 131 83 203 ¢ (196 c4 304 D
2 2 002 stx (Start of Text) 67 43 103 132 54 204 o (197 c5 305 E
33 003 ety (Endof Text) BS 44 104 133 85 205 e (198 cE 306 F
4 4 004 pf (Punch Off) g9 45 105 134 86 206 f [199 cF 307 G
5 5 005 ht [Horizontal Tak) 7O 48 108 135 87 20F g |[200cd 310 H
G 6 006 Ic [Lowver Case) 747 107 136 85 210 h [201 c3 311 |
77 007 del (Delete) 72 48 110 137 89 M1 i 202 ca M2
g &8 M0 ge 7349 111 138 Sa 212 203 ch 33
9 9 M1t 74 da 112 ¢ 139 8b M3 204 co 34
10 & M2 smm (Start of Manual Message) 72 d4bh 113 . 140 Sc 214 205 cd 315
11 b 013t [erical Tab) TE dc 114 = 141 8d 215 206 ce 316
12 c© 04 1f [Farm Feed) 7 o4d 115 142 Se 216 200 cf #7
13 o M5 cr (Carriage Return) 78 d4e 116 + 143 8f M7 208 9o 320
14 e 06 =0 (Shift Cut) 794 117 | 144 90 220 209 i 3
15 f M7 = [Shift in) 80 50 120 & 145 91 2 M0 d2 322 K
16 10 020 dle  (Datas Link Escape) g1 2 1 146 92 222 Kk [211 d3 323 L
17 11 02 detl (Dewice Contral 1)) g2 52 122 147 93 223 | M2 4 324 M
18 12 022 dc2  do2 (Device Contral 2 g3 93 123 143 94 224 m (213 d5 325 M
19 13 023 tm  (Tape Mark) 84 54 124 149 95 225 n (M4 dE 326 O
20 14 024 res  (Restare) g5 95 125 180 96 226 o (25 df 327 P
2 15 025 nl [Mewy Line) 85 5B 128 151 97 227 p [2ME6d3 330 2
22 16 026 bz (Backspace) g7 o7 127 192 95 230 g (217 d9 33 R
23 17 027l [lcdled) 88 58 130 1583 99 231 r [ 28 da 332
24 18 030 can  (Cancel) g9 289 13 154 9a 232 219 db 333
25 19 031 em  (End of Medium) a0 55 1321 155 9b 233 220 de 334
26 1a 032 cc (Cursaor Control) 91 2h 133 % 156 9c 234 221 dd 333
27 b 033 cul (Customer Uze 1) Q2 5S¢ 134 * 157 Qd 235 222 de 336
28 1c 034 itz (Interchandge File Separstor) 93 5d 135 ) 1598 Qe 236 223 df 337
29 1d 035 gz (Interchange Group Separatar) | 94 Se 136 159 9f 237 224 20 340
30 1e 036 irs  (Interchange Record 95 5f 1357 160 a0 240 225 21 341
311 037 vz (Interchange Unit Separator) 98 B0 140 - 161 a1 241 ~ | 2268 e2 342 =
32 20 040 dz (Digit Select) 7 B1 14 7 |1B2 a2 242 = (227 ed 343 0T
3302 0 =0z (Start of Significance) 95 B2 142 163 a3 243 t (228 e4 344 U
34022 042t (Field Separator) 99 63 143 164 a4 244 o (229 e5 345 %
35 23 043 100 B4 144 165 a5 245 v (230 eB 345 W
36 24 044 byp  (Bypass) 101 B2 145 166 a6 246 w |23 eF 347 =
3725 D45 If [Line Feed) 102 BE 146 167 a7 247 = [232e8 350 %
35 26 046 eth  (End of Transmission Block) 103 B7 147 168 a5 250 v [233e9 33 Z
39 2F 047 ezc (Escape) 104 BS 150 169 a9 251 =z |[234 e;m 352
40 28 030 105 69 151 170 aa 252 235 eb 353
41 28 051 106 Ba 152 | 171 ab 253 236 ec 354
42 2a 032 =m (Set Mode) 107 Bb 153 |, [172 ac 234 237 ed 359
43 20 053 cu?  (Customer Uze 23 108 Bc 154 9% [173 ad 255 238 ee 356
44 2o 034 109 Bd 155 174 as 256 239 eF 357
45 2d 055 eng  (Enguiry) 110 Be 156 = |175 af 257 240 fO 3680 0O
46 2e 036 ack  (Acknowledge) 111 Bf 15F 7 [176 b0 260 24 1 381 A
47 2 057 bel  (Bel) 112 70 160 177 bl 281 24212 382 2
45 30 080 113 7 161 178 b2 262 243 f3 363 3
49 3 081 114 72 162 179 h3 263 244 f4 3B4 4
a0 32 062 =yn  (Synchronous idle) 115 73 163 180 b4 264 245 f5 365 5
51 33 063 116 74 164 181 hS 285 2ME fE 3BE B
52 34 064 pn (Punch Cn) M7 72 165 152 hE 266 247 f7 367 7
53 35 0BS r= (Reader Stop) 118 7E 166 183 by 267 MEf3 370 85
24 36 066 uc  (Upper Casze) 119 77 167 184 b5 270 249 f3 3 9
85 37 067 eot  (End of Tranzmisszion) 120 78 170 185 b9 271 280 fa 372 |
26 38 070 121 7917 - 186 ha 272 251 th 373
57 38 0™ 122 Ta 172 187 hb 273 282 fo 374
25 3a 072 123 Th 173 & [185 bc 274 253 fd 375
59 3b 073 cus  (Customer Uze 3) 124 7o 174 @ (189 bd 275 254 fe 376
GO0 3c 074 dod  (Dewice Control 4) 125 7d 173 ! 190 he 276 255 ff 377 eo
B1 3d 075 nak (Megative Acknowledge) 126 Ye 176 = | 191 bt 277
62 Ze O7E 127 FHA7F 0" [192 c0 300 4
B3 3f 077 =ub  (Substibute) 128 80 200 193 o1 301 A
G4 40 100 Sp (Space) 129 81 21 & |[194c2 302 B

Source: www.pubblinet.com
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Additional Reading:
Floating Point data:
e Tt is similar to scientific notation in base 10

¢ The floating point format is suitable to express large numbers

e Tt is used to store mixed as well as integer data

¢ Floating point numbers are often stored in four bytes

®* Format of 4-byte (single precision) floating point number is:

31 30 23 22 0

S Exponent Mantissa

N M _

V V’
8 bits 23 bits

The left most bit indicates the sign of the mantissa
Next 8 bits are for exponent stored in excess 127 notation
Exponent in excess 127 is an unsigned integer that is equal to the actual
exponent plus 127

® Mantissa is a normalized 23-bit number with a hidden or implied 1 in 24th bit
position

Examples:

100,, = 1100100, = 1.1001 x 2°

S Exponent Mantissa

0 1000 0101 10010000000000000000000
-12.7010 = -1100.112 = 1.10011 x 23

S Exponent Mantissa

1 1000 0010 10011000000000000000000

The term floating point is derived from the fact that there is no fixed number of
digits before and after the decimal point; that is, the decimal point can float.
There are also representations in which the number of digits before and after the
decimal point is set, called fixed-point representations. In general, floating-point
representations are slower and less accurate than fixed-point representations, but
they can handle a larger range of numbers.

Note that most floating-point numbers a computer can represent are Jjust
approximations. One of the challenges in programming with floating-point values is
ensuring that the approximations lead to reasonable results. If the programmer is
not careful, small discrepancies in the approximations can snowball to the point
where the final results become meaningless.

Because mathematics with floating-point numbers requires a great deal of computing
power, many Microprocessors come with a chip, called a floating point unit
(FPU), specialized for performing floating-point arithmetic. FPUs are also called
math coprocessors and numeric coprocessors.
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College of Engineering & Management, Kolaghat

Sample Questions and answers

1. Convert the following numbers in 8-bit binary codes:
(a) 1279, (b) 635, (c) 85.95;; (up to 4 bit fraction).

a) 127,, = 64+32+16+8+4+2+1 = 0111 1111,

b) 63, = 110 011, (just converting each octal digit to its equivalent
binary code) .

c) 85.95,)= (64+16+4+1)+(0.5+0.25+0.125+0.0625)= 0101 0101.1111

2. Express the following Decimal Numbers in 8-bit Binary code:

(a) -120 - in signed magnitude, (b) -108 in 1’s complement, (c) -
125 - in 2’s complement.
a) -120;, = -(64+32+16+8)= 1111 1000, - in signed magnitude

b) -108,p = 1’s complement of +108 (0110 1100) = 1001 0011
c) -125,, = 2’s complement of +125 (0111 1101) = 1000 0011

3. Express the following decimal number in BCD codes:
(a) 79, (b) 65, (c) 63; a) & b) in 8421 BCD and c) in 4221 BCD
codes
a) 79,0 = 0111 1001 - in 8421 BCD
b) 65;,, = 0110 0101 - in 8421 BCD
c) 63,0 = 1100 0011 - in 4221 BCD

4. Express the following signed binary numbers (2’'s complement) to
equivalent Decimal Numbers:
(2) 1011 1111, (b) 1010 1010, (c) 0111 1111

a) 1011 1111, its msb being 1, it is -ve and its magnitude can be
found by taking its 2’s complement. 1011 1111 => 2’s complement is
0100 0001 => 65. So the number is -65;,

b) 1010 1010, msb being 1, it is -ve and its magnitude can be found
by taking its 2’s complement. 1010 1010 => 2’s complement is 0101
0110 => -86;,

c) 0111 1111, msb being 0, it is +ve and its magnitude is 127. So the
number is +127;,.

5. Convert the following numbers into Gray Codes:
(a) 453, (b) 974, (c) 1010 1010,
a) 45, = 100 101,

Binary 100101
Shifted Binary 100101
Gray Code 110111

20 | Digital System Design [EC-302] by Dr. Saibal Kr. Pradhan, CEMK, 3ECE-B, AY2023-24



Binary 1100001
Shifted Binary 1100001
Gray 1010001
c) Binary 10101010
Shifted Binary 10101010
Gray 11111111

6. Do the following operations:
(a) (=100-15) in 1’'s complement method
-100 = 1’s complement of +100
+100 = 0110 0100
-100 = 1001 1011

+15 = 0000 1111
-15 = 1111 0000
-100 = 1001 1011
-15 = 1111 0000
-115 = 1 1000 1011

adding end around carry => 1000 1100, msb being 1, answer is -ve
and the magnitude can be obtained by taking 1’s complement which
gives, 0111 0011 => 115. So the result is -115 which matches with
the decimal addition.

(b) (-128+127) in 2’s complement method

-128 = 1000 0000

+127 = 0111 1111

-1 = 1111 1111, msb being 1, answer is -ve and the magnitude
can be obtained by taking 2’s complement which gives, 0000 0001
=> 1. So the result is -1 which matches with the decimal
addition.
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Boolean Algebra:
Various Logic Gates - their truth tables and circuits

INTRODUCTION

We have learned that binary variables can assume only two values, and these are
called logic values; logic 1 and logic 0. They may also be denoted as ON/OFF,
HIGH/LOW, YES/NO, TRUE/FALSE. Logical operators operate on binary values and binary
variables. Variable identifiers may be A, B, C, x, y, z, RESET, START etc.

Basic 1logical operators are logic functions OR, AND and NOT. Logic gates are
electronic circuits implementing logic functions. Mathematical system developed for
specifying and transforming logic functions 1is called Boolean Algebra. We study
Boolean algebra as a foundation for designing and analyzing digital systems.

AND is denoted as a dot (.), OR is denoted by a plus (+) and NOT is denoted by an
over bar (), a single quote mark (') after, or (~) before the variable. For Example
Y = A.B is read as “Y is equal to A AND B”
z = x + y is read as “z is equal to x OR y” and

X = ~A is read as “X is equal to NOT A"

Behaviors of logic functions can be defined in words or in a table. Such a table
lists all possible combinations of input variables and corresponding outputs and is
called a truth table.

AND GATE

An AND gate has two or more inputs and only one output. The output assumes logic 1
when all the inputs assume logic 1 and assumes logic 0 when any one of its inputs
assumes logic 1. Therefore, the AND gate may be defined as a device whose output is
1 if and only if all its inputs are 1. Thus, an AND gate 1is also called all or
nothing gate. The logic symbol and the truth table for a two-input AND gate is shown
in Fig.1l.

Inputs Output
N A B Y=A.B
Y = A.B 0 0 0
B 0 1 0
1 0 0
1 1 1
Logic symbol (b) Truth Table

Fig.l: A two-input AND Gate

OR GATE

Like an AND gate, an OR gate may also have two or more inputs and only one output.
The output assumes logic 1 when any of its inputs assumes logic 1 and assumes logic
0 when all the inputs assume logic 0. Therefore, an OR may be defined as a device
whose output is 1, even if one of its inputs is 1. Hence an OR gate is called any or
all gates. The logic symbol and the truth table of a two-input OR gate is shown in
Fig.2.

A Inputs Output
Y=A+B A B Y=A+B
B 0 0 0
0 1 1
1 0 1
1 1 1
(a) Logic symbol (b) Truth Table

Fig.2: A two-input OR Gate
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NOT GATE (INVERTER)

A NOT gate, also called an inverter, has only one input and one output. It is a
device whose output is always the complement of the input. Therefore, the output of
a NOT gate assumes a logic 1 if its input is logic 0 and vice-versa. The logic
symbol and the truth table of a NOT gate is shown in Fig.3.

Input Output

A Y=~A
A Y :"‘A O l
1 0
(a) Logic symbol (b) Truth Table

Fig.3: A NOT Gate

UNIVERSAL GATES

Though logic circuits of any complexity can be realized by using the three basic
gates AND, OR and NOT, there are two universal gates NAND and NOR. Any logic circuit
can be implemented by either NAND or NOR gates.

NAND GATE

A NAND gate 1s the combination of AND followed by NOT. The symbol and the truth
table of a NAND gate are shown in Fig.4.

Inputs Output
A B Y=(A.B)'
A _ 0 0 1 A .
AB 0 1 1 Y=A+B
B 1 0 1 B
1 1 0
(a) Logic symbol (b) Truth Tale (c)Equivalent representation

Fig.4: A two-input NAND Gate

NAND gate as a bubble OR gate

Truth table of the two-input NAND gate reveals that the output is 1 if either of the
inputs or both are 0. Or in other words, output is 1 when either A’=1 or B’=1 or
both A’ and B’ are 1 which 1is the characteristics of an OR gate. Thus, a NAND
function in positive logic 1is equivalent to an OR function in negative logic and a

NAND gate 1is called a bulled OR gate or a negative OR gate. This can be expressed
mathematically as,

Y=A.B=A+B

NAND gate as an OR gate

If we apply bubble inputs to a NAND gate, the expression of the output of the NAND
becomes,

>
ol
Il
il
wll

Y = +B=A+B

Therefore, bubbled NAND gate is equivalent to an OR gate.
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NAND gate as inverter

A NAND gate can be used as an inverter by shorting its inputs and applying the input
signal to the common terminal or by connecting all the inputs except one to the
logic 1 and applying the signal to it as shown in Fig.5.

A +5V

Y=AA=A Y=A1=A
A

(a) Signal is applied to the input pins (b) Signal 1is applied to one 1input
shorted together terminal and others are shorted and
connected to logic 1
Fig.5: Realization of Logic NOT by using NAND gate

NOR GATE

A NOR gate is the combination of an OR followed by a NOT gate. The symbol and the
truth table of a NAND gate is shown in Fig.6.

Inputs Output

B Y= (A+B)’
A _ 0 0 1 A _
A+B 0 1 0 Y=A.B
B 1 0 0 B
1 1 0
(a) Logic symbol (b) Truth Tale (c) Equivalent representation

Fig.6: A two-input NOR Gate

NOR gate as a bubble AND gate

Truth table of the two-input NOR gate reveals that the output is 1 if and only if
both the inputs are 0 which is the characteristics of an AND gate. Thus a NOR
function in positive logic 1is equivalent to an AND function in negative logic and
thus a NOR gate can be called a bulled AND gate or a negative AND gate. This can be
expressed mathematically as,

Y=A+B=A.B

NOR gate as an AND gate

If we apply bubble inputs to a NOR gate, the expression of the output of the NOR
becomes,

Y=A+B=A.B=A.B

Therefore, a bubbled NOR gate is equivalent to an AND gate.
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NOR gate as inverter

A NOR gate can also be used as an inverter like a NAND gate by shorting its inputs
and applying the input signal to the common terminal or by connecting all the inputs
except one to the logic 0 and applying the signal to it as shown in Fig.7.

A

(a) Signal is applied to the input (b) Signal is applied to one input
pins shorted together terminal and others are shorted
and connected to logic 0
Fig.7: Realization of Logic NOT by using NOR gate

XOR Gate

An Exclusive OR (XOR) gate has two inputs and one output. The output assumes logic 1
if one and only one of the inputs assumes logic 1. If both the inputs are either 0
or 1, the output is 0. A way to remember the XOR gate is “one or the other but not
both”. XOR represents the inequality function, i.e., the output is HIGH (1) if the
inputs are not alike otherwise the output is LOW (0). XOR can also be viewed as
addition modulo 2. As a result, XOR gates are used to implement binary addition in
computers. A half adder consists of a XOR gate and an AND gate.

Inputs Output A
A B  Y=(A®B)
R D= D
Y 0 1 1
B 1 0 ] B
1 1 0
(2) Logic symbol (b) Truth Tale (c) Implementation by NAND Gate
only
Fig.8: A two-input XOR Gate
XNOR Gate

The XNOR gate is a digital logic gate whose function is the inverse of the XOR gate.
The two-input version implements logical equality, behaving according to the truth
table. A HIGH output (1) results if both inputs to the gate are the same. If one but
not both inputs are HIGH (1), a LOW output (0) results.

Inputs Output

A B  Y=(A®B) 4 |

A 0 0 1
y 0 1 0 | XNOR B

B 1 0 0

1 1 1 b
(a) Logic symbol (b) Truth Tale (c) Implementation by NOR Gate

only
Fig.8: A two-input XNOR Gate
Important

XOR 1is called an odd function as 1its output assumes logic 1, if odd numbers of
inputs assume logic 1 and XNOR is called an even function as its output assumes
logic 1 when even numbers of inputs assume logic 1.

BOOLEAN ALGEBRA
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Axioms and Laws of Boolean Algebra

Axioms or postulates of Boolean Algebra are a set of logical expressions that we
accept without proof and based on these postulates useful theorems are built.
Actually, the axioms are nothing but the definitions of three basic logic operations
AND, OR and NOT. Each axiom is actually the outcome of an operation performed by a
logic gate.

AND Operation OR Operation NOT operation

Il
o

Axiom 1: Axiom 5: 0 + Axiom 9: 1’

Axiom 2: Axiom 6: 0 + Axiom 10: 0r =1

=
-+

Axiom 3: Axiom 7:

= B O O

b o ~ o
II

= o o o

= o = o
II

=)

=
+

Axiom 4: Axiom 8:

Complementation Laws:
If A =0, then A’ =1
If A =1, then A" =0
(A7)’ = A

Commutative Laws:
A+ B =B + A
A . B=B.A

Associative Laws:
(AR +B) +C=2A+ (B + Q)
(A . B) .C=A. (B .C)

Distributive Laws:

A (B + C) = AB + AC

A+ BC = (A + B) (A + C)

Proof: RHS = (A+B) (A+C) = AA+AC+BA+BC = A+AC+BA+BC = A(1+C+B)+BC = A+BC = LHS

Redundant Literal Rule (RLR):

A+ A'B=A+ B

Proof: LHS = A+A’'B = (A+A’) (A+B), using distributive Law
= 1.(A+B) = A+B = RHS

A (A" + B) = AB

Proof: LHS = A(A’+B) = AA’+AB = AB = RHS

Absorption Laws:
A+AB = A
A(A+B) = A

Consensus Theorem (Included Factor Theorem) :
1. AB + A'C + BC = AB + A'C

Proof:
LHS

AB+A’ C+BC = AB+A’C+BC(A+A’) = AB+A’C+ABC+A’BC = AB(1+C)+A’C(1+B)
= AB + A’C = RHS
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This theorem can be extended to any number of variables. Like

AB + A'C + BCD = AB + A’C

LHS = AB + A'C + BCD = AB + A'C + BC + BCD = AB + A’C + BC(1+D) = AB + A’C + BC = AB
+ A’'C = RHS.

2. (A+B) (A"+C) (B+C) = (A+B) (A’'+C)

Proof:

LHS = (A+B) (A’"+C) (B+C) = (AA’'+AC+BA’+BC) (B+C) = ACB+ACC+BA’B+BA’C+BBC+BCC =
ACB+AC+BA’ +BA’ C+BC = AC+BA’ +BC

RHS = (A+B) (A’+C) = AA’+AC+BA’+BC = AC+BA’+BC = LHS

Transposition Theorem:

AB + A’'C = (A+C) (A'+B)
Proof: RHS = (A+C) (A"+B) = AA’+AB+A’C+BC = 0+AB+A’C+BC (A+A")
= AB+A’C+ABC+A’BC = AB(1+C)+A’C(1+B) = AB + A’C = LHS
De Morgan’s Theorem
Law 1: (A + B)’ = A" .B’
Law 2: (AB)’ = A’ + B’

Duality Principle:

An OR logic in +ve logic becomes an AND logic in -ve logic and vice-versa. Positive
and negative logics thus give rise to a basic duality in all Boolean identities.
Also changing from one logic to another, 0 becomes 1 and 1 becomes 0. Thus from a
Boolean identity, we can produce the dual identity by changing all ‘+’ signs to ‘.’
signs, all ‘.’ signs to '+’ signs and complementing all 0’s and all 1’s but the
variables are not complemented.

Relation between complement and dual

Let us consider a function f as:

f(aA, B,C,u.)

Then the complement of the function may be written as:

fc (A, B, Cu. .) = f(A, B, Chueee ) = £d (A", B', C7 . )

fd (A, B, C,un ) = £(A", B, C'.... ) = fc (A’, B’, C' .. )

The first relation states that the complement of a function can be obtained by
complementing all the wvariables in the dual function. Similarly the second relation
states that the dual can be obtained by complementing all the literals in the
function. Some dual identities are given below:

Expression Dual

0/ =1 17 =0

0 1 =0 1 +0=1

0 .0=0 1 +1=1

A.0=0 A+ 1 =1

A . 1=A A+ 0=A

A . A=A A+ A=A

A . A" =0 A+ A" =1

A . B =B A A+ B =B+ A

A (B Cc) = (A .B) . C A+ (B+C) = (A+B) +C
A (B + C) = AB + AC A + B.C = (A + B) (A +C)
A (A+B) = A A + AB = A

(AB)" = A’ + B’ (A + B)’ = A'B’
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Representation in SOP and POS forms

Any Boolean expression can be simplified in many different ways resulting in
different forms of the same Boolean function. All Boolean expressions, regardless of
their forms, can be converted into one of two standard forms; the sum-of-product
form and the product-of sum forms. Standardization makes the evaluation,
simplification and implementation of Boolean expression more systematic and easier.

The Sum of Product (SOP) Form

Writing functions in SOP form means that the inputs of each term are multiplied
using AND function, then all terms are added together using OR function. The
variables in each term are not necessarily all the variables of the function. For
example, a SOP of F(A,B,C) may contain a term that contains only the variable A but
not B nor C, in such case the term is not in its standard SOP form. Standard SOP
term must contain all the variables. Boolean algebra states that X+X' =1, then any
nonstandard product term may be multiplied X+X' for any missing literal X without
affecting its value.

Example:
The following function is written in the SOP form:

F(A,B,C)=A+BC'+A'BC

The inputs to the function F are A, B and C. In each term the inputs are ANDed then
all terms are ORed to form the function F. Note that the last term A'BC contains all
the inputs of the function (A, B and C), so, this term is written in standard form.
But the second term BC' is not in standard form because the input A does not exist,
then multiply it by (A'+A). The same is done for the remaining term as follows:

F(A,B,C)=A(B+B"') (C+C')+BC' (A+A')+A'BC = ABC+ABC'+AB'C+AB'C'+ABC'+A'BC'+A'BC

From Boolean algebra, (A+A=A) then all similar terms in the equation will be reduced
to one term. Now the function F becomes

F(A,B,C)=ABC+ABC'+AB'C+AB'C'+A'BC'+A"'BC

The Product of Sum Form (POS)

Writing functions in POS form means that the inputs of each term are Added together
using OR function and then all terms are multiplied together using AND function. The
variables in each term are not necessarily all the variables of the function. For
example, a POS of F(A,B,C) may contain a term that contains only the variable A but
not B nor C, in such case the term is not in its standard POS form. Standard POS
term must contain all the function variables. Boolean algebra states that X.X'=0,
then if the term is added to (X.X'"), it becomes in the standard POS form, but its
value is not affected.

Example
The following function is written in the POS form:
F(A,B,C)=A. (B+C') . (A'+B+C")

The inputs to the function F are A, B and C. In each term the inputs are ORed then
all terms are ANDed to form the function F. Note that the last term (A'+B+C'")

contains all the inputs of the function (A, B and C), so, this term is written in
standard form. But the second term (B+C') is not in standard form because the input
A does not exist, then add (A'.A). The same 1is done for the remaining term as
follows:

F(A,B,C)=[A+(B.B")+(C.C")].[(B+C")+(A.A")]. (A"+B+C")

F(A,B,C)=[ (A+B+C) . (A+B+C"') . (A+B'+C) . (A+B"'+C") ] . [ (A+B+C') . (A'"+B+C") ]. (A'+B+C")

From Boolean algebra, (A.A=A) then all similar terms in the equation will be reduced
to one term. Now the function F becomes
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F(A,B,C)=(A+B+C) . (A+B+C'") . (A+B'+C) . (A+B'+C'") . (A"+B+C")

Minterms
Writing a function in its minterm format is equivalent to writing the function in
its standard SOP format such that the value of the function at these terms is 1. So
that if we have the truth table relating the input variables to the function F, then
we can determine which cases result in F=1 and write the minterm form of the
function.

Maxterms

Writing a function in its maxterm format is equivalent to writing the function in
its standard POS format such that the value of the function at these terms is 0. So
that if we have the truth table relating the input wvariables to the function F, we
can determine which cases result in F=0 and write the maxterm form of the function.

Minimization of logic expressions by algebraic method
Every Boolean expression must be reduced to as simple form as possible before
implementation to reduce hardware cost as well as to reduce time delay. Laws of
Boolean algebra must be utilized while reducing a Boolean expression. The following
steps are useful for reduction of expression.
a) Remove parenthesis
b) Drop all the identical terms except one. For example, AB+AB+AB+AB = AB
c) A term containing a literal and its complement may be dropped. For example,
A.B.B” = A.0 =0
d) Two terms those are identical except for one variable which is missing in one
term, the larger term may be dropped. For example, ABC’'D + ABC’ = ABC’ (D+1) =
ABC’
e) Two terms having some literals those are present in true form in one and in
complemented form in the other, they can be combined to a single term by
dropping those literals. For example, ABCD + ABCD’ = ABC (D+D’) = ABC.l1 = ABC.

EXAMPLES:

AB’ + A(B + C)’ + B(B + C)”
AB’ +AB’ C’ +BB’ C’
= AB’
[AB’ (C + BD) + A’B’]C
[AB’ C+AB’BD+A’B’ ]C
= AB’/CC+A’B’C
= AB'C+A’B’C
= B'C
A'BC + AB'C’ + A’B’C’ + AB'C + ABC
= A’BC + ABC +AB’C’+A’B’C’+AB'C
= BC+B’C’+AB’C
= C(B+AB’)+B’C’
= C[ (B+A) (B+B’)]+B’C’
= C(A+B)+B’C’
= AC + BC + B’C’
XYZ+YYZ+Y’ Z+XY!
= XYZ+YZ+Y’ Z+XY'
= YZ+Y' Z+XY'
= Z4+XY’
[ (AB’C) (AB’)’+BC]’
= [(AB’C) (A’ +B)+BC]’
= [AB’CA’+AB’CB+BC]’
= [BC]'
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[ (ABC+A’B’ )’ +BC]"’
= [(ABC)’ (A’B’)’+BC]’
[ (A’ +B’+C’) (A+B) +BC]’
= [A’A+A’B+B’A+B’B+C’A+C’B+BC]’
= [A’B+AB’+AC’ +BC’+BC]"’
[A’ B+AB’ +B]’
= [B+AB' ]’
= B’ . (AB')’
= B’ . (A’ +B)
= A’'B’

Venn Diagram

Venn diagram 1is a graphical method to illustrate the relationships among the
variables of a Boolean expression. The diagram consists of a rectangle and a few
overlapping circles inside. Each circle represents a binary variable. A variable
assumes logic 1 inside the circle and logic 0 outside it as shown in the Fig.l
below.

Fig.l: Venn Diagram representing the binary variable A

A two variable Venn Diagram 1is shown in Fig.2 which has two overlapping circles
indicating two binary variables A and B.

T

Fig.2: Venn Diagram for two variables A, B

A'B!

The figure has four distinct areas inside the rectangle:
the area not belonging to either A or B (A'B’),

the area inside the circle A but outside B (AB’),
the area inside B but outside A (A’'B) and
the area in both the circles (AB).

Tl S S

Venn Diagram may be used to illustrate the postulates of Boolean Algebra or to show
the validity of the theorems. Fig.3-4 are a few such illustrations.

30 | Digital System Design [EC-302] by Dr. Saibal Kr. Pradhan, CEMK, 3ECE-B, AY2023-24



B

A'B’

Fig.3: Venn Diagram showing the wvalidity of the following relations:
(i) A=A+AB, (ii) A=AB'+AB, (iii) A=(A'B'+A'B)'

A S A B
A'B! A'B'
¥OR Function, F=AB'+A'B= ¥NOR Function,
(A'B'+AB) ' F=A'B'+AB=(AB'+A'B)"

Fig.4: Venn Diagram showing ¥OR and ¥NOR function

Three variable Venn Diagram is shown in Fig.5. There are eight distinct areas which
are marked by the terms they represent.

Fig.b: Venn Diagram showing relation of three wvariables
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Minimization of logic expressions by Karnaugh Map Method

A Karnaugh Map or K-Map is a set of m-squares indicating minterms or maxterms of a
Boolean function of n-variables such that 2" = m. For example, a function of 4
variables will have 2°=16 cells as shown below.

cD Minterms can be found by ANDing variables in either true

00 01 11 10 (for 1) or complemented (for 0) form corresponding to
AB
the cell.
m,= A’'B’C'D'’, my = A'’B’C'D, ...., my = ABCD’ and m;s =
00 mo m, m; m; | ABCD
01 my ms my mg
11 mi; my3 mys mi4
10 mg my  mp My
cD Maxterms can be found by ORing complemented or un-
AB 00 01 11 10 complemented variables for 1 or 0 of the cell
respectively
My, = A+B+C+D, M; = A+B+C+D’, ...., My, = A’+B’+C’+D and M

00 Mo My Ms M2 = ar4p’+c’+D’

01 My  Ms M; M

11 M]2 M13 M15 Ml4

10 Ms My M | My

Minterms contained in the function contribute 1’s to the function and are plotted as
1’s to the corresponding cells. Maxterms contribute 0’s to the cell. Each of these
leads to the solution for the function (F). Minterms contributing 0’s to the
function (not contained in the expression of the function) can be plotted as 0’s to
the corresponding cells and can be solved to get the complement of the function
(F") .

Relation between the Minterm and the Maxterm representing to the same cell of the
Karnaugh Map
Let us consider a minterm m, for a three variable function, F(A, B, C). Therefore,
m, = A’B'C’
Now, (mg)” = (A", B’, C’)’ = A+B+C = M,

Therefore, complement of a minterm gives the corresponding maxterm and vice-versa.

Thus for a function,

F(A,B,C) =my + my +mgy + my = >m(0, 2, 4, 7) = 3(0, 2, 4, 7)

F’"(A,B,C) = (my + my + my + my)’ = my’ m my’ my’ = My.M,.M,.M; = [[M(Q, 2, 4, 7) =
[r o, 2, 4, 7)

The complement of the function can also be written by including the minterms
contributing 0 to the function. Therefore, the minterms not included in F gives the
complement of F as:

F’"(A,B,C) = m + my + ms + mg = ym(1l, 3, 5, 6) = 3(1, 3, 5, 6)
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Note: If the number of minterms contributing 1 to the function is more than half of
the total number of minterms then it will be wise to solve the complement of the
function.

Cell Adjacency:

The cells in a Karnaugh map are arranged so that only a single variable changes
between adjacent cells. Adjacency 1is defined by a single variable change. In the 3-
variable map the 010 cell is adjacent to the 000 cell, the 011 cell, and the 110
cell. The 010 cell is not adjacent to the 001 cell, the 111 cell, the 100 cell, or
the 101 cell. A number of cells (2" in numbers where n=1, 2, 3 ..... .) may also be
adjacent provided n variables complement (change) amongst the cells. For example,
four cells are said to be adjacent if only 2 variables complement, 8 cells are said
to be adjacent if only 3 variables complement and so on. The following 4 variable K-
map shows different adjacencies.

yz
00 01 11 10
WX
———@l______l____/}* (1*
01

11
1* 1* !
[

_ 10 | 1 1* G

Adjacent cells in K-map can be combined to drop the variables that complement to get
a term having less number of literals following the Boolean principle, A+A’ = 1 and
thus ABC + A’BC = (A+A’)BC = BC or ABC'+A’'B’'C’ = C’. Terms representing a group of
adjacent cells are called Prime Implicants(PI). Thus, a Prime Implicant is a reduced
product term. For example, AB, A, BC are prime implicants of a Boolean function
F(A,B,C). Different groups of adjacent cells may include a particular cell as a part
of each such group. A prime implicant having at least one cell that is not combined
by other prime implicants 1is called an Essential Prime Implicant (EPI). These 1-
Cells covered by one group only are called Distinguished 1-Cells (Stared Cells).

KARNAUGH MAP MINIMIZATION

For an SOP expression in standard form, a 1 is placed in the Karnaugh map for each
product term in the expression. Each 1 is placed in a cell corresponding to the
product term. For example, for the product term AB’C, a 1 goes in the 101 cell on a

3-variable map.
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Plot the following minterms in K-map and combine the adjacent cells and write the
minimal function.
F(a,B,C)

A’B’C’+A’B’C+ AB’C’+AB’'C+ABC’ +ABC
»(0, 1, 4, 5, 6, 7)

BC
00 01 11 10
A o]
B’
0 1 L

Thus, the minimal function is:
F(A,B,C) = A + B’

Let us solve the problem by POS Minimization. For a POS in standard form, a O
placed in the Karnaugh map for each sum term in the expression. The complement
the function may be written in terms of Maxterms as:

F’" (A,B,C) = [](MM;MM;MgM-)
BC
00 01 11 10
A
,J B
0 0 0| | —————

Thus the simplified complement function may be written as:
F’ (A,B,C) = BA'
And, F(a,B,C) = (F')’ = (BA’)' = A + B’

The complement of the same function can be solved by the missing minters in the
expression of F as follows:

F(a,B,C) = »(0, 1, 4, 5, 6, 7)
So, F’ (A.B.C) = Y (2, 3)
BC
00 01 11
A 10
| — b
0 0 0 A’B
1
Thus, F’ = A’B, and F = (F')’ = (A’B)’ = A + B’

is
of
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Some Definitions

IMPLICANT:

Any single 1 or group of 1's that can be combined together on a Karnaugh map of the
function F is called an IMPLICANT. So any possible grouping of 1’s is an implicant.

N'yz
. vz /

[a]4] ol 11 10
00 1 1
|~
W'x"\r'z' /
01
| wxz
11 1 1 L4—
.:—'—'_'_'_'_'_'“'—
wz —— |
10 1 1
1

PRIME IMPLICANT:

A PRIME IMPLICANT is a product term that cannot be combined with another term to
eliminate a variable. A group contained in a large group is not a prime implicant.

nyz
. vz /

00 o1 11 10

0o 1 1

l v

uﬁf?&.#ﬁﬁ,,ﬁ#’““ | xyz

01 1 7

11 1 1 - |1 L

“E.”rffffrf,ffff’ ﬂh‘xxhhﬂ
wxy
10 1 1
1

/

Mot a Prime Implicant

A single 1 is a prime implicant, if it is not adjacent to any other 1's.Two adjacent

1's form a prime implicant, if they are not contained in a group of four adjacent
1's.

Four adjacent 1's form a prime implicant, if they are not contained in a group of
eight adjacent 1's.

The minimum sum of products (SOP) expression for a function consists of some (BUT
NOT NECESSARILY ALL) of the prime implicants of a function.

35 | Digital System Design [EC-302] by Dr. Saibal Kr. Pradhan, CEMK, 3ECE-B, AY2023-24



If a SOP expression contains a term which is not a prime implicant, then it cannot
be a minimum expression.

ESSENTIAL PRIME IMPLICANT:
A prime implicant is ESSENTIAL if it contains a minterm which is not covered by any
other Prime Implicant.

x'yz
e }‘FZ /

[a 4] o1 11 10
00 1 1
il ]
W'x']l";' __/_/-’/ F/_,-"f xyz
01 1 -
e I i 1 - |1 L]
wz —— | “a&&&ha
WKy
10 1 1 Mot an Essential

i Prime Implicanr

K-map rules in a nutshell:

Ll ol ol ol ol ol

Ll =

Groups of 1’s do not include any cell containing 0 and vice-versa

Groups are either horizontal or vertical. Diagonal grouping is not allowed
Groups must contain 1, 2, 4, 8, 16 or in general 2" adjacent cells

A group should be as large as possible

Each cell containing a 1 must be included in at least one group

Groups may overlap

Groups may wrap around the map. The leftmost cell in a row may be grouped with
the rightmost cell and the top cell in a column may be grouped with the bottom
cell

There should be as few groups as possible

Groups are to be Essential Prime Implicants for minimal solution.

Simplify the Boolean function

F(w,x,y,z)=ym(0,1,2,4,5,6,8,9,12,13,14)

Solution:

Since the function has 4 variables, the K-map has 16 cells as shown in figure
below
Minterms are marked with 1’s in the corresponding cells in the K-map
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VE

TE
0o o1 11 10
oo 1 1 1
01 1 1 |1
11 1 1 1
10 1 1

8 adjacent cells having 1’s can be combined to form a single term y’ by
dropping 3 variables (w, x, z) that vary

Remaining three 1’s on the right can be combined in two groups of 4 squares.
The top two 1’s on the right are combined with top two 1’s on the left giving
the term w'’z’

The only cell left in 3* row and 4™ column. Instead of taking this cell alone
(which will give a term of 4 literals), we can combine with four adjacent
cells though already used to form the term xz’

The final simplified expression is thus

F =y +m w'z’" + xz'’

Simplify F = 5 (0, 2, 5, 7, 8, 10, 13, 15)

Solution:
%+ Since the function has the maximum minterm ml5 it is a 4-variable function and

thus the K-map has 16 cells/squares as shown below D.

+ 8 minterms are marked with 1’s in the corresponding squares in the K-map

- = &

CD

AR oo o1 11 10
oo 1 | | 1
01 1 1

11 1 1

10 1 | | 1

They may be combined in two groups each having 4 squares

Reduced term for the group having 4 central cells is BD by dropping A and C as
they vary

4 corner squares being adjacent to each other form a group and the reduced
term is B’D’ by dropping A and C as they vary

Thus the simplified function is: F = BD + B’D’
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Simplify F = ¥ (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

Solution:

+ Minterms are plotted in the corresponding cells in the K-map as shown

CD
AR 00 o1 11 10
0o 1| 1 | 1
01 1 1
11 1 1
0071 || 2 |2 |]]1
"] 1l

1’s are covered in 4 groups all being essential prime implicants as they all
have at least one 1 that is not shared by other.
% Thus minimal solution is:

F =B’'D" + BD + AB’ + CD

Simplify F = ¥ (0, 1, 4, 5, 13, 14, 15)

Solutions:

+ Fach of the Groups is a prime implecants (PI) but BC’D and ABD are not
essential. One these implecants is to be removed.

cD
AB oo 01 11 10

a0 W 1 -3
A'C

11 1

e

ABC

10

ABD

4+ Removing one PI gives a solution and the other will give another as shown:
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CD CcD
AB 00 01 11 10 AB 00 01 11 10
a0 K 1\§\ a]4] K }\

A'C ’ A'C P‘
01 k_i/’ 01 & 1

BC'D 1 —
11 1 i 1
1 1 1 . ABC
10 10
ABD
F=A'C'+ ABD + ABC F=A'C'+BC'D + ABC
+ Fach solution is equally valid
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Don’t Care Condition:

A Boolean function may be expressed as sum of minterms contributing 1. The function
is 0 for remaining minterms. We assume that all the combinations of variables are
valid. In practice, there are some applications where all combinations of variables
are not valid. For example, 4-bit binary code for BCD number has six combinations
(1010, 1011, 1100, 1101, 1110, 1111) that are not used and considered to be
unspecified. Functions that have unspecified outputs for some input combinations are
called incompletely specified functions and we simply don’t care what value 1is
assumed by the function for those unspecified minterms. These minterms are called
don’t care conditions. These don’t care conditions can be used on the map to provide
further simplification of boolen function.

Don’t care minterms are marked in the map as X to distinguish them from 1’s and 0’s.
When simplifying the function, X’s can be included with the groups of 0 or 1 to make
the group larger so that best minimization may be achieved.

Example:
Simplify the boolean function
F=3 (,3,7,11,15)
That has the don’t care conditions
D=2% (0,2,5)
Solution:
Two solutions are possible as shown below:

VZ VE
W W
oo 01 11 10 00 o1 11 10
0o X 1 1 ¥ oo H 1 1 b
01 ¥ 1 01 X 1
11 1 11 1
10 1 10 1
F=w'x'+yz F = w'y+y=z

5-Variable K-map

+ Maps of more than 4 variables are more difficult to use because the geometry
for combining adjacent squares becomes more involved

+ For 5 variables, e.g. ABCDE, we need 2° = 32 squares

+ A 5-variable K-map can be drawn as two 4-variabe maps side by side. Left hand
map corresponds to A=0 (minterms mO to ml5) and right hand map corresponds to
A=1 (minterms ml6 to m31)

+ FEach map has its own adjacent cells that can be combined to derive reduced
terms

#+ Corresponding cells of the two maps are also adjacent as only one variable
varies i.e. A

+ For example, Cell #5 is adjacent to Cell #21, Cell #10 is adjacent to Cell #26
etc.

40 | Digital System Design [EC-302] by Dr. Saibal Kr. Pradhan, CEMK, 3ECE-B, AY2023-24



DE A=0 A=1

BC oo o1 11 10 oo o1 11 10
oo
0 1 3 2 16 17 19 18
01
4 =) 7 [ 20 21 23 22
11
12 13 15 14 28 29 31 30
10
g g 11 10 74 25 27 26

+ A group of adjacent cells in one map is also said to be adjacent to the

similar group in the other map.

4+ For example, a group of Cell Nos. (4, 5, 12, 13) is said to adjacent to the

group of cells Nos. (20, 21, 28, 29) etc.
#+ This can be visualized by thinking one 4-variable map on TOP of the other

Example:
Simplify the function, F =3 m(1,3,4,5,11,12,14,16,20,21,30)

B'CD!

BC

DE
oo
oo -ﬂﬂrﬂ"#— 1 ] 1 \\
0 1 3 2 15\ 18
ARICIE =] 17 19
- g

01

A'CD'E! 21 23 22

\-

11

I.
I.

29 31| F30

{20
\ 28
10 1
i 9 _11 10 [, 25 274 26
H'C'DE/ \BB'D'E' BCDE'

Simplified boolean function is:

F = B’CD’+BCDE’+A’B’C’'E+A’CD'E’ +A’C' DE+AB'D'E’
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Problem:
Simplify: F=Y% (0,2,3,5,7,8,11,13,17,19,23,24,29,30)

DE A=0 A=1
BC oo 01 11 10 o0 01 11 10
00
0 1 3 2 16 17 19 18
01
4 5 7 6 20 21 23 22
11
12 13 15 14 28 29 31 30
10
2 9 11 10 24 25 27 26

Simplify: F =% (0,1,2,3,8,9,16,17,20,21,24,25,28,29,30,31)

DE A=20 a=1
BC 00 01 11 10 0o 01 11 10
00
0 1 3 2 16 17 19 18
01
4 5 7 & 20 21 23 22
11
12 13 15 14 28 29 31 30
10
) ) 11 10 24 25 27 26
F =
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6-Variable K-map

[ |
EF = B
co oo o1 11 10 oo 01 11 10

0o
0 1 3 2 1a 17 19 18

D1
A 4 5 7 & 20 21 23 22

11
132 13 15 14 28 23 31 30

10
;) g 11 10 24 25 27 25

oo

32 33 35 34 48 49 51 50
01

36 37 39 38 52 53 55 54

A

11

44 45 47 48 80 Bl 83 =
10

40 41 43 42 1= 57 59 58

A six variable map can be thought of 4 4-variable maps as shown

Within a map, adjacency is similar to a 4-variable map

Corresponding Cells in maps (in 2 maps or even in 4 maps) can be thought of
adjacent

Similar groups in maps (2 or 4 maps) can also be adjacent

= &
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Example:
F=23 (0, 2, 4, 8, 10, 13, 15, 1le, 18, 20, 23, 24, 26, 32, 34, 40, 41, 42, 45, 47,
48, 50, 56, 57, 58, 60, 61)

Solution:
# As the max term is 61, it is a six variable function, F(A,B,C,D,E,F)
+ 1’s are put in the corresponding cells as below

B B

EF’ EF EF EF’ EF’ EF EF EF’
Ao 1 i[ 2 e 17 1w a8

o’ 1'4'1\ 0 0 1) i1 )] o 0 1)
|4 5 7 6 | 20 7| —23 22

A cp |\ 0 0 0 1/ 0 L1 ) 0
I I B I 14 28 29 31 30

D | o 7:1 1/ 0 0 0 0 0
. 8 9 1| —10 24 35 27| — 2

cor L1 0 0 L1 L1 ) 0 0 L 1)
.32 33 35 34 .28 29 51l — 50

cp | 1) 0 0 (1) (1) 0 0 L 1)
T 7 s 38 52 53 s5] 54

CD 0 1] 0 0 0 0 0 ]
A u A 16 G0| 761 63 62

oo fﬁﬁ 1/ 0 n |l 1“::1 0 0
| |4 Bl |—s56] | 57 59| — 58

cor | L1 | W) 0 (1) RNIRT 0 [ 1)

N 1 >

16 Corner cells can be combined together to eliminate 4 variables. The term
is: D’'F’

Cells 41, 45, 57, 61 can be combined to form - ACE’'F

Cells 13, 15, 45, 47 can be combined to form - B’CDF

Cells 0, 4, 16, 20 can be combined to form - A’'C'E’'F’

Cells 56, 57, 60, 61 can be combined to form - ABCE’

Cell 23 is an isolated cell giving the term - A’BC’DEF

Thus the minimal function is:

F =D'F’ + ACE'F + B'CDF + A'C'E’'F’ + ABCE’ + A’BC’'DEF

FEEEE &

Exercise:
F=3% (0,1, 2, 3, 4, 5, 8, 9, 12, 13, 16, 17, 18, 19, 24, 25, 36, 37, 38, 39,
52, 53, 60, 61)

Ans: F = A’B'E’ + A’C'D’ + A’D'E’ + AB'C'D + ABCE’
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Quine McCluskey Method:

The Quine McCluskey Method is an exact algorithm for finding minimal sum of products
implementation of a Boolean function. This is tabular method and is the foundation
of many software minimization methods.

There are 4 main steps in the Quine-McCluskey algorithm:
1. Generate Prime Implicants

2. Construct Prime Implicant Table

3. Reduce Prime Implicant Table

(a) Remove Essential Prime Implicants
(b) Column Dominance
(c) Row Dominance

4. Solve Prime Implicant Table

Coloumn Dominance and Row Dominance:

Row and column dominance relationships can be used to simplify the prime implicant
table in the Quine McCluskey algorithm, as explained by the following definitions
and theorems.

Definition 1
Two identical rows (or columns) a and b of a reduced prime implicant table are said
to be interchangeable.

Definition 2

Given two rows a and b in a reduced prime implicant table, a is said to dominate b,
if a has checks in all the columns in which b has checks and a and b are not
interchangeable.

Definition 3

Given two columns a and b in a reduced prime implicant table, a is said to dominate
b, if a has checks in all the rows in which b has checks and a and b are not
interchangeable.

Theorem 1

Let a and b be rows of a reduced prime implicant table. Then, if a dominates b or a
and b are interchangeable, there exists a minimal sum of products that does not
include b; dominated rows can be eliminated.

Theorem 2

Let a and b be columns of a reduced prime implicant table. Then, if b dominates a or
a and b are interchangeable, there exists a minimal sum of products that does not
include a; dominating columns can be eliminated.

Examples:
Simplify the Boolean function
F=5% (0, 1, 2, 8, 10, 11, 14, 15)

Generation of Prime Implicants:
Step 1: Group minterms based on the number 1’s present 1in their Dbinary
representations

Step 2: Each minterm of a group is compared with all the minterms of the next group
to find a mismatch only in one position, put tick marks to the right of both the
minterms and write the new terms by omitting the variable that differs. This process
will be continued until all the minterms are compared.

Step 3: The searching process in step 2 will be repeated for column II and column
IIT will be created
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No. of 1’s in the Column I Column IT Column III Repeated Implicants are

binary (Minterms) (Size 2 Implicants) (Size 4 Implicants) neglected except one
representation of WXYZ WXYZ WXYZ
the minterms
0 0 0000 0,1 000- Pl 0,2,8,10 0-0 P2
0,2 00-0 0,8,2,10 0-0  x
1 0001 0,8 000
1 2 0010 10, 11, 14, 15 1-1-  P3
8 1000 < 2,1 010 10, 14, 11, 15 1-1-  x
8,10 10-0 <
2 10 1010 W
10,11 101-
3 11 1011~
14 1110 10,14  1-10
4 15 1111 11,15 1-11
14,15 111-

Step 4: The unchecked terms form the prime implicants. Any term, however, appearing more than once will be cancelled
except one. The sum of the prime implicants will give a valid expression of the function but not necessarily a minimal one.
The selection of prime implicants that form the minimal function is made from a prime implicant table.

Step 5: Selection of Prime Implicants

A table is formed having prime implicants in rows and minterms in columns as follows to select the necessary prime
implicants.

Minterms Minterms

Prime Impli g i
rime Implicants contained in the

EPI

(PT) Pls 0 1 2 8 10 11 14 15
* Pl wx’y’ 0,1 X X
* P2 X'z’ 0,2,8,10 X X X X
P3 wy 10,11, 14,15 X X X X
L R A A A A B A

Minterms 1, 2 and 11 are contained only in prime implicants P1, P2 and P3 respectively. So all of them are essential prime
implicants and are to be considered for final minimal expression. Therefore, the minimal Function is:

99,

F=wXxy +x’z2’ + wy
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Let us solve the same problem by K-Map method for varification.

W’X’y’
yZ X,Z’
00 01 1 10
WX
7 -
—w || 1 [ A (1
01
11 ] _
! ™ ]
—_10 | 1 1 Q

LI N ]

F=wXxy’ +x’2’ + wy
Both the methods give the same solution.

Coloumn and Row Dominance:
Necessary prime implicants can be selected by row dominance and coloumn dominance as follows:

1
1 . :
Minterms =>  { 1 2 8 10 Il 14 15
* wxy 0,1 j.( X | | i
""" ‘WYZ“’“"'lfkﬂ"'““"---":-"--"""--"""--"E""---3!(""---:r"""-X""""""-"
————— MAA C2Autetetts & i & aiateiutuietutetetd st iututs ettt fefetutututete tetts Riatuls it sttt alete- it ettt it Setet il
* X'z’ 0,2,8,10 X X X X !
wy 10, 11, 14, 15 ; | X X X X
O A A A T A
1 ! !

Coloumn 2 is dominated by col 0, 8 and 10 and thus they are eliminated. Coloumn 11 and 15 dominates each other and thus
one can be eliminated.

Now row wy dominates row wyz’ and wyz and thus dominated rows may be eliminated.
There is no other dominance relationship among the rows or the columns in the reduced prime implicant table. As each of the
remaining rows corresponds to an EPI, the algorithm successfully terminates with the following solution:

F=P1 +P4+P5=wXy +x’2 + wy

47 | Digital System Design [EC-302] by Dr. Saibal Kr. Pradhan, CEMK, 3ECE-B, AY2023-24



Example:

Simplify F=Y (4, 8,9, 10, 11, 12, 14, 15)

Column I Column 1II Column III Repeated
(Minterms) (Size 2 Implicants) (Size 4 Implicants) Implicants are
No. of neglected except
s WXYZ WXyzZ WXYZ one
| 4 0100 N 4,12(8) -100 8,9, 10, 11 10--
8 1000 Y 8,9(1) 100- \ 8,10,9, 11 10--  x
8,10 (2) 10-0 \ 8,10, 12, 14 1--0
9 1001 N 8,12(4) 1-00 N 8,12, 10, 14 -0 x
2 10 1010 W
12 1100 v 9,11(2) 10-1 v 10, 11, 14, 15 1-1-
10,11(1)  101- \ 10, 14, 11, 15 1-1-  x
3 111011 ~  10,14(4)  1-10 \
14 1110 N 12,142) 110 v
4 15 1111 N 11,154) 1-11 \
14,15(1)  111- \
Prime implicant table to choose the necessary prime implicants:
Essential Prime Prime Implicants (PI) Covering Minterms Minterms
Implicant (EPI) 4 8 9 10 11 12
* xy’z’ 4,12 X X
* wx’ 8,9,10,11 X X X X
wz’ 8, 10,12, 14 X X X
* wy 10, 11, 14, 15 X X
VoA NN NN

14

X
X

V

15

X

V

Here, the minterms xy’z’, wx’ and wy are essential prime implicants as they have minterms 4, 9 and 15 respectively those are
not covered by any other prime implicant. These essential prime implicants also cover all the minterms and hence give the
minimal SOP form of the function:

F=xy’z’+ wx’+wy

Let us solve the problem by K map method

yz
00 01 11 10
WX
00
wy
01 1
11
1L LT 1 1 /
Xy'z’
1
I bl
WX
10 1 1 1 L
F=xy’z’ + wx’ +wy
Both the methods result in the same solution.
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Combinational Circuits

Digital circuits are of two types, Combinational and sequential. In combinational circuits, the outputs at any instant are solely
dependent on the present inputs. On the other hand, the outputs of sequential circuits at any instant depend not only on the
present inputs but also on past inputs and past outputs. Thus sequential circuits need memory elements along with
combinational circuits for its implementation.

BINARY ADDER AND SUBTRACTOR
A binary adder is a combinational circuit that adds binary data. Similarly, a binary subtractor subtracts a data from the other.

A half adder/subtractor is a circuit that adds/subtracts two bits. A full adder/subtarctor takes care of carry/borrow.

The truth table and the circuit implementation of a half adder are as follows:

Inputs Outputs Implementation using gates Symbol
A | B | C(Carry) | S(Sum) A B
Ao I
0] o 0 0 Bo = :
1-bit Half
4_
o | 1 0 : C Adder
C
1 0 0 1 l
S
1 1 1 0

The truth table, expressions of sum and carry outputs, the circuit implementation of a full adder are as follows:

Inputs Outputs Implementation using gates Symbol
A B Cin Cou S
- A B
0|0 0 0 0 PR —
0] 0 1 0 1 E l l
5
0411010 11/ 6, D 1-bit Full
0 1 1 1 0 Cout D Adder <_(:in
10 0 0 1
tlol 111 o Cout !
1 1 0 1 0
1|1 1 1 1 S
Expressions:
S = A’B’Cin + A’B(Cin)’ + AB’(Cin)’ + ABCin
= (A’B’Cin + ABCin) + (A’B(Cin)’ + AB’(Cin)’)
= (A XNOR B)Cin + (A XOR B)(Cin)’
= (A XOR B)’Cin + (A XOR B)(Ciny’
= A XOR B XOR Cin
Cout = A’BCin+ AB’Cin + AB(Cin)’ + ABCin
= (A XOR B)Cin + AB
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The truth table and the circuit implementation of a half subtarctor are as follows:

Inputs Outputs (X-Y) Implementation using gates Symbol
Al B | B | pifp A B
(Borrow) A ; .
Difference l l
0 0 0 0 B -
Y 1-bit Half
‘_
0 1 1 1 Bout Subtractor
~I>— Borrow l
1 0 0 1
D
1 1 0 0
Inputs Outputs Implementation using gates Symbol
A| B | Bin | Ba | D
00 0 0 ‘ 0 A B
A
D
00 1 1 1 B _AD* l l
0| 1] 0 1 | 1 |B8in . 1-bit Full
o1 1] 1o B, <— Subtractor [*+—B,
10 0 0 1 D h Bout
1ol 1] o]o l
1] 1 0 0 0
1|1 1 1 1 D
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Sequential Circuits:

So far we have studied combinational circuits. Output of a combinational circuit depends on its current inputs. There is also
another class of circuit in digital electronics called sequential circuits. Output of a sequential circuit not only depends on the
current inputs but also its past inputs and outputs i.e. output = f (current inputs, past inputs, past outputs). Then how to feed
past inputs and past outputs? We need memory. Therefore, sequential circuit requires both combination circuit and memory
elements for implementation. The block diagram of a sequential circuit is shown below:

Memory Element ~ [N————

1

1

| 1

[T . — T > Ouput

1

: >

:

I

1

1

1

1

1

1

1

1

I

1

Sequential circuits are broadly classified into two main categories, known as synchronous or clocked and asynchronous or
unclocked sequential circuits, depending on the timing of their signals. A sequential circuit whose behavior can be defined
from the knowledge of its signal at discrete instants of time is referred to as a synchronous sequential circuit. A sequential
circuit whose behavior depends upon the sequence in which the input signals change is referred to as an asynchronous
sequential circuit.

LATCH and FLIP-FLOP

The basic 1-bit digital memory circuit is known as a latch. It can have only two states, either the 1 state or the 0 state. A latch
is also known as a bistable multivibrator. Latches can be obtained by using NAND or NOR gates.

The major difference between flip-flop and latch is that the flip-flop is an edge-triggered type of memory circuit while the
latch is a level-triggered type. It means that the output of a latch changes whenever the input changes. On the other hand, the
flip-flop only changes its state whenever the control signal goes from low to high and high to low.

The general block diagram representation of a latch/flip-flop is shown in Figure below.

"'I ¥ Normal sutput
Inputs = b
l > Q' —Inverted o utput

Block diagram of a thp-flop.

It has one or more inputs and two outputs. The two outputs are complementary to each other. If Q is 1 i.e., Set, then Q' is 0; if
Qis 0i.e., Reset, then Q' is 1. That means Q and Q' cannot be at the same state simultaneously.

Basic Latch using NOR and NAND Gates and their Truth Tables
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@ Q
Q
Q Ro—no Q
S
S R Q(t+1) Action S” | R’ | Q(t+l) | Action
0 0 Q Hold State 0 0 X Not allowed
1 0 1 Set State 0 1 1 Set state
0 1 0 Reset State 1 0 0 Reset state
1 1 X Not Allowed 1 1 Q Hold state
Gated S-R and D latches and their symbols
Re Do——
Q Q
E o—s
) Q Q
Se Ee
-l g (o] = — D Q-
—E
— R Qb —E Q-
J-K Flip-flop:

JK flip-flop is basically an SR flip-flop with feedback which enables only one of its two input terminals, either SET or RESET to
be active at any point of time thereby eliminating the invalid condition seen previously in the SR flip-flop circuit. Also when
both the J and the K inputs are at logic level "1" at the same time, and the clock input is pulsed either "HIGH", the circuit will
"toggle" from its SET state to a RESET state, or visa-versa. This results in the JK flip-flop acting more like a T-type toggle flip-
flop when both terminals are "HIGH".

cli|kl g Q |_
" Tlofa]| lateh | latch J )’ o Q
— ) T|all o 1
T{L]o 1 ]
G — dgfg;ﬁ;r T[] ] toggle | teggle CLK
= |3 (d ] latch latch e
T x|o|L]| latch latch K e Q
d x|L|o| lawh | latch
L]l latzh latch

Although this circuit is an improvement on the clocked SR flip-flop it still suffers from timing problems called "race" if the
output Q changes state before the timing pulse of the clock input has time to go "OFF". To avoid this the timing pulse period

52 | Digital System Design [EC-302] by Dr. Saibal Kr. Pradhan, CEMK, 3ECE-B, AY2023-24




( T) must be kept as short as possible (high frequency). As this is sometimes not possible with modern TTL IC's the much
improved Master-Slave JK Flip-flop was developed.

Master Slave J K Flip flop Dual JK Flip-flop 74L.S73
“Master Latch” “Slave Latch” J1 01 Q1 GND K2 Q2 Q2
. ,(/. . \ 14 L 32 L 1ol e L s
e \_—D 00
Clk OJ;

o D—1 ) D—L
( -

THEHEHEHsHEHT-

CLK1CLR1 K1 Wac CLKZ CLRZ J2

The master-slave flip-flop eliminates all the timing problems by using two SR flip-flops connected together in a series
configuration. One flip-flop acts as the "Master" circuit, which triggers on the leading edge of the clock pulse while the other acts
as the "Slave" circuit, which triggers on the falling edge of the clock pulse. This results in the two sections, the master section
and the slave section being enabled during opposite half-cycles of the clock signal.

The input signals J and K are connected to the gated "master" SR flip-flop which "locks" the input condition while the clock

(CIK) input is "HIGH" at logic level "1". As the clock input of the "slave" flip-flop is the inverse (complement) of the "master"
clock input, the "slave" SR flip-flop does not toggle. The outputs from the "master" flip-flop are only "seen" by the gated "slave"
flip-flop when the clock input goes "LOW" to logic level "0".

When the clock is "LOW", the outputs from the "master" flip-flop are latched and any additional changes to its inputs are
ignored. The gated "slave" flip-flop now responds to the state of its inputs passed over by the "master" section. Then on the
"Low-to-High" transition of the clock pulse the inputs of the "master" flip-flop are fed through to the gated inputs of the "slave"
flip-flop and on the "High-to-Low" transition the same inputs are reflected on the output of the "slave" making this type of flip-
flop edge or pulse-triggered.

The 74LS73 is a Dual JK flip-flop IC, which contains two individual JK type bi-stable's within a single chip enabling single or
master-slave toggle flip-flops to be made. Other JK flip-flop IC's include the 74LS107 Dual JK flip-flop with clear, the 74LS109
Dual positive-edge triggered JK flip-flop and the 74LS112 Dual negative-edge triggered flip-flop with both preset and clear
inputs.

T Flip Flop
When both ] =K =1, Q(t+1) = Q’ i.e. . Thus on arrival of every clock [
edge, the output will toggle. A toggle flip-flop or T flip-flop can be i —-—I_:'i_-_“-—'-_ Thes Ll
made from a J-K flip-flop by tying both of its inputs to logic 1. It is o4 :1'::'_"‘_---:
] o o

useful for constructing binary counters, frequency dividers etc. — .

1a
11

[} Trensbon tekde

Clocked T fip-top
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	SIGNED NUMBERS
	Example-9: Represent the following decimal numbers in 8-bit singed magnitude, 1’s and 2’s complement forms: +35d, -35d, +65d, -65 d, +127 d, -127d, +128d, -128 d
	Shortcut methods of finding 2’s complements are as follows:
	Axioms and Laws of Boolean Algebra

